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Abstract

The unprecedented lockdowns due to COVID-19 in spring 2020 triggered changes in human activities in
public spaces. A predictive modeling approach was developed to characterize the changes in the perception
of the sound environment when people could not be surveyed. Building on a database of soundscape
questionnaires (𝑁 = 1, 136) and binaural recordings (𝑁 = 687) collected in 13 locations across London
and Venice during 2019, new recordings (𝑁 = 571) were made in the same locations during the 2020
lockdowns. Using these 30-second-long recordings, linear multi-level models were developed to predict
soundscape pleasantness (𝑅2 = 0.85) and eventfulness (𝑅2 = 0.715) during the lockdown and compare
changes for each location. Performance was above average for comparable models. An online listening study
also investigated the change in sound sources within the spaces. Results indicate: 1) human sounds were less
dominant and natural sounds more dominant across all locations; 2) contextual information is important for
predicting pleasantness but not for eventfulness; 3) perception shifted towards less eventful soundscapes and
to more pleasant soundscapes for previously traffic-dominated locations, but not for human- and natural-
dominated locations. This study demonstrates the usefulness of predictive modeling and the importance of
considering contextual information when discussing the impact of sound level reductions on the soundscape.

Keywords: Soundscape, Psychological acoustics, Acoustic modeling, Acoustic noise, Acoustic ecology,
Signal processing, Urban development, Regression analysis

1. Introduction

The global emergency caused by the COVID-19 pandemic in early 2020 required national lockdown mea-
sures across the world, primarily targeting human activity. In the United Kingdom, construction and
transport were allowed to continue, but a decrease in activity was observed (Hadjidemetriou et al., 2020).
In other countries, such as Italy, the restrictions were more severe and even included limiting people’s
movement to a certain radius from their place of residence (Ren, 2020). The explorations in environmental
acoustics of lockdown conditions across the world have revealed various degrees of impact on the acoustic
environment, with researchers reporting reductions in noise levels affecting the population at the scale of
urban agglomerations such as Ruhr Area in Germany (Hornberg et al., 2021) and conurbations in the south
of France (Munoz et al., 2020). Impacts have also been reported at a scale of a multimillion city such as
Madrid (Asensio et al., 2020b) or Barcelona (Bonet-Solà et al., 2021) as well as at a more local, city-center
or even public space-scale in cities such as Stockholm (Rumpler et al., 2021), London (Aletta et al., 2020),
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Girona (Alsina-Pagès et al., 2021), or Granada (Vida Manzano et al., 2021). In general, these studies have
demonstrated a decrease in urban noise levels and indicated a difference in the amount the level decreased
depending on the type of space investigated (e.g. parks, urban squares, etc.) and the type of human activity
characteristic for the space, with higher reductions in places typically associated with human sounds and
activities such as shopping and tourism.

Those studies were mostly focused around the 𝐿𝐴𝑒𝑞, as well as a standardization approach to reporting
subsequent changes in soundscape proposed by Asensio et al. (2020a). They were not able to reveal the
perceptual impact of such conditions in public spaces also because of: 1) the lack of subjective data for the
exact or comparable locations in previous years; and 2) the lack of participants present in public spaces
during the lockdown, hence the inability to collect soundscape data in situ. Munoz et al. (2020) combined
noise measurements with an online questionnaire deployed to residents, some of which were residing in the
areas covered by the noise monitoring network available. The participants were asked to recall how their
lockdown area sounded before and during the first lockdown in 2020 and to describe the perceived change.
They observed a consistent reduction in levels, followed by the perceived reduction of transport sounds
(air and road) and an increase of natural sounds, while the resulting environment was described as pleasant,
calm, and peaceful. By combining field recordings and focus groups, Sakagami (2020) and Lenzi et al. (2021)
observed changes in the sound source composition and the affective quality of soundscape in a residential
area in Kobe, Japan and a public space in Getxa, Spain, respectively, during the different stages of the
lockdown period. Following the easing of lockdown measures, a decrease in animal and traffic sounds was
observed in Kobe, while an increase in eventfulness, loudness, and presence of human sound sources, followed
by a decrease in pleasantness, was shown in Getxa.

Aletta et al. (2020) explored the impacts of the COVID-19 lockdowns on the acoustic environment in
London in particular, through many short-term (30s) binaural recordings. This study revealed that average
reductions in the various locations considered ranged from 10.7 dB (𝐿𝐴𝑒𝑞) to 1.2 dB, with an overall average
reduction of 5.4 dB. This metric-reporting focused approach left the following research questions unanswered:
how would people have perceived these spaces as a result of this change in acoustic environment (RQ1), and
would these sound level reductions result in improvements to the soundscape of the spaces (RQ2)? The 1st
research question (RQ1), addressing the perceptual effect of the change in urban soundscape induced by the
lockdowns, can be further broken down into the following questions: how was the sound source composition
influenced by the change; how would the affective response to the acoustic environment in lockdowns change;
and could this demonstrate the effect of human activities on the perception of an acoustic environment in
general?

These questions arise out of the soundscape approach, which is characterized by prioritizing the perceptual
effect of an acoustic environment by taking into account the interaction of sound sources, context, and
the person perceiving it (ISO 12913-1:2014, 2014; Truax, 1999), bringing together objective and subjective
factors. The soundscape approach to noise mitigation and management is being recognized as a response
to arising environmental requirements on noise pollution and sustainability, such as the regulation of quiet
areas in Europe (European Union, 2002; Kang and Aletta, 2018; Radicchi et al., 2021). This has been
further formalized in ISO/TS 12913-2:2018 (2018) via the adoption of the circumplex model of soundscape
(Axelsson et al., 2010), in which the perception of a soundscape can be described in terms of its pleasantness
and eventfulness, as one of the standard methods of soundscape assessment.

Soundscape research is therefore traditionally rooted in environmental acoustics and environmental psy-
chology, typically dealing with outdoor spaces (Torresin et al., 2020) and urban open spaces, where parks
and squares are often used as case study sites (Kang, 2006). A soundscape assessment typically requires
people to be surveyed but the presence of people at a location influences assessment (Aletta and Kang, 2018)
and ‘quiet places’ usually require low numbers of users to remain quiet, which limits the possibility of an
assessment. Even in a crowded public space, soundscape surveys are demanding as they require significant
resources to carry out at scale, limiting their widespread application (Mitchell et al., 2020). Therefore, a need
for a predictive model arises to overcome this limitation and improve the implementation of the soundscape
approach into everyday planning and management practices.
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According to a recent review of predictive soundscape models from Lionello et al. (2020), the degree of
employing auditory and non-auditory factors in soundscape prediction varies with some studies relying on
contextual, personal/demographic (Erfanian et al., 2021; Tarlao et al., 2020) or social media (Aiello et al.,
2016) data entirely to predict and generate soundscape features. Some methods also incorporate perceptually-
derived features, such as subjective sound level and visual pleasantness as predictors (Lionello et al., 2020).
In general, these methods which incorporate perceptually-derived inputs achieve better accuracy rates than
those which don’t, however this perception information must also be obtained from people via a survey and
therefore are unsuitable for predictive modeling where surveys are not possible. For example, Ricciardi et al.
(2015) proposed two models based on data collected from a smartphone application to predict urban sound
quality indicators based on linear regressions. The first model which incorporated perceptually-derived input
features (visual quality and familiarity) achieved an 𝑅2 of 0.72, while a second model without these features
achieved an 𝑅2 of 0.58. This indicates the necessity for considering and accounting for the influence which
contextual factors in a space have on the relationship between the sound environment itself and the listener’s
perception of it (i.e. the soundscape) while also highlighting the challenges associated with a predictive model
which depends only on measurable features.

Therefore, a third research question arises: what are the key features needed for a soundscape prediction
model based on comprehensive acoustic on-site measurements to be used for assessing locations with low
social presence or in situations where conducting surveys is impractical (RQ3)?

2. Materials and methods

This study was conducted via initial onsite data collection campaigns in Central London and Venice in 2019
before the outbreak of COVID-19 as part of the Soundscape Indices (SSID) project (Mitchell et al., 2020)
and in 2020 during the strictest part of the lockdowns (Aletta et al., 2020), including objective acoustic data
(2019 and 2020) and subjective responses (2019 only). The full in situ dataset, as described in this section,
has been made publicly available as ‘The International Soundscape Database (V0.2.1)’ on Zenodo1(Mitchell
et al., 2021).

Using both 2019 and 2020 binaural recordings, an online listening experiment was conducted to provide an
understanding about the change in sound source composition. The 2019 onsite questionnaire data were used
to define the dominant sound source at each location as a starting point for interpreting soundscape change.
A predictive model was developed to reveal the change in the perceived pleasantness and eventfulness using
objective acoustic data and location to predict subjective responses. Although the initial (2019) dataset
contains additional locations (specifically, in Spain, the Netherlands, and China), due to the nature of this
study as a reaction to the strict movement and activity restrictions, the sites which could be included in the
lockdown (2020) measurement campaigns were limited to locations where staff and equipment had access
and where recordings could be undertaken during the spring of 2020.

The sites were selected to provide a mixture of sizes and uses, varying in typology ranging from paved
squares to small and large parks to waterside spaces across both cities. Throughout the text they are
indexed via a LocationID based on the location’s name (e.g. CamdenTown, SanMarco), while a more in-
depth overview of each is given in supplementary material2. London is taken as an example of a large,
typically noisy city while the Venice sample provides a unique look at spaces with typically very high human
activity levels and no road traffic activity. In particular, the 2019 Venice surveys were taken to coincide
with the yearly Carnevale festival in order to capture its distinct soundscape.

The ISO/TS 12913 (ISO/TS 12913-2:2018, 2018) series were consulted for reporting on soundscape data.
A detailed description of the 2019 survey campaigns is featured throughout the paper and in the public

1See https://zenodo.org/record/5654747 for “The International Soundscape Database (V0.2.1)” (Last viewed 11/9/21)
2See supplementary material at https://www.scitation.org/doi/suppl/10.1121/10.0008928 for site descriptions per ISO/TS

(2018) featuring the address, overall psychoacoustic characteristics of the location, typical use of each location, and pictures
taken during the survey sessions.
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database. This study was approved by departmental UCL IEDE Ethics Committee on 17th July 2018 for
onsite data collection and on the 2nd of June 2020 for the on-line listening experiment and is conducted in
adherence to the ethical requirements of the Declaration of Helsinki (World Medical Association, 2013).

2.1. Onsite data: Questionnaires, binaural measurements, and recordings
The initial onsite data collection featured both questionnaire data collected from the general public and

acoustic measurements, conducted across thirteen urban locations (in London 𝑁 = 11, in Venice 𝑁 = 2)
between the 28th of February and the 21st of June 2019, with additional sessions in July and October 2019.
Although the total survey period in 2019 extended over several seasons, the surveys at any individual location
did not extend over seasons with different occupancy patterns. A total of 1,318 questionnaire responses were
collected from the general population across the measurement points during 1 – 3 hour-long campaigns in
both cities in 2019, accompanied by 693 approximately 30-second long 24-bit 44.1 kHz binaural recordings.
After data cleaning, each of the 13 locations was characterized by between 14 to 80 recordings and between
24 to 147 questionnaire responses. Mean age of the participants was 33.8, with a standard deviation of 14.57
(45% male, 53.8% female, 0.4% non-conforming, 0.9% prefer-not-to-say).

Although recent results from both Tarlao et al. (2020) and Erfanian et al. (2021) indicate the important
influence of personal and demographic factors – in particular age and gender – on soundscape perception,
these factors were not included as potential features in the modeling process. Given the nature of this
study as addressing a scenario when people could not be surveyed, no additional demographic information
is available in the lockdown case to be fed into the model and is therefore not useful to include for the
development and application of this specific predictive model. This information is reported throughout the
study simply to provide further context to the data collection.

The subsequent measurement campaign in 2020 mimicked the binaural recording strategy applied in the
initial campaign and was performed between the 6th and the 25th of April 2020 in both cities, this time
excluding the questionnaire. An additional 571 binaural recordings were collected on-site in 2020.

2.1.1. Data collection
The 2019 data collection was performed across all the locations using the protocol based on the Method A

of the ISO/TS 12913-2:2018 (2018), as described in Aletta et al. (2020) and Mitchell et al. (2020), collected
either via handheld tablets or paper copies of the questionnaire. The full questionnaire and data collection
procedure are given in Mitchell et al. (2020), however the key parts used for this study are those addressing
sound source dominance and perceived affective quality (PAQ).

Participants are first asked to rate the perceived dominance of several sound sources, as assessed via a
5-point Likert scale, coded from 1 (Not at all) to 5 (Dominates completely). The sound sources are split into
four categories: Traffic noise, Other noise, Human sounds, and Natural sounds and each is rated separately.
Next are the 8 PAQs which make up the circumplex model of soundscape (Axelsson et al., 2010): pleasant,
chaotic, vibrant, uneventful, calm, annoying, eventful, and monotonous. These are assessed on a 5-point
Likert scale from 1 (Strongly disagree) to 5 (Strongly agree). In order to simplify the results and allow for
modeling the responses as continuous values, the 8 PAQs undergo a trigonometric projection to reduce them
onto the two primary dimensions of pleasant and eventful, according to the procedure outlined in Part 3 of
the ISO 12913 series (ISO/TS 12913-3:2019, 2019). In order to distinguish the projected values from the
Likert-scale PAQ responses, the projected values will be referred to as ISOPleasant and ISOEventful and
can be considered to form an x-y coordinate point (x = ISOPleasant, y = ISOEventful) as explained in
detail in Lionello et al. (2021).

The calibrated binaural device SQobold with BHS II by Head Acoustics was used in both campaigns at all
the locations by various operators to capture acoustic data, as mentioned in the acknowledgments. Following
the established onsite protocol (Mitchell et al., 2020), when participants were stopped in a group and filled
in their responses simultaneously, a single binaural recording was used to capture their experience as a
group. The purpose behind this sampling strategy was to obtain data from the perspective of a typical user,
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corresponding to a range of individual experiences available within an urban open space. These recordings
are indexed by a GroupID such that the recording for each group is matched up to each of the corresponding
respondents and their individual survey responses.

2.1.2. Data cleaning
The cleaning of the samples was conducted using the ArtemiS SUITE 11. The researcher discarded or

cropped whole recordings, or its parts affected by wind gusts or containing noises and speech generated by
the recording operator by accident or for the purpose of explaining the questionnaire to a participant. This
resulted in 1,258 binaural recordings then processed further, as described in Section 2.1.3. Psychoacoustic
analyses are shown in the publicly available database3.

In order to maintain data quality and exclude cases where respondents either clearly did not understand the
PAQ adjectives or intentionally misrepresented their answers, surveys for which the same response was given
for every PAQ (e.g. ‘Strongly agree’ to all 8 attributes) were excluded prior to calculating the ISO projected
values. This is justified as no reasonable respondent who understood the questions would answer that they
‘strongly agree’ that a soundscape is pleasant and annoying, calm and chaotic, etc. Cases where respondents
answered ‘Neutral’ to all PAQs are not excluded in this way, as a neutral response to all attributes is not
necessarily contradictory. In addition, surveys were discarded as incomplete if more than 50% of the PAQ
and sound source questions were not completed.

The site characterization per ISO/TS 12913-2:2018 (2018) is available in the supplementary material4 and
public database5, featuring the address, overall psychoacoustic characteristics of the location, typical use of
each location, and pictures taken during the survey sessions.

2.1.3. Psychoacoustic analyses
The binaural recordings were analyzed in ArtemiS SUITE 11 to calculate the suite of 11 acoustic and

psychoacoustic features given in Table 1 to be used as initial predictors. The (psycho)acoustic predictors
investigated were selected in order to describe many aspects of the recorded sound – in particular, the goal
was to move beyond a focus on sound level, which currently dominates the existing literature on the acoustic
effects of lockdowns noted in Section 1. In all, they are expected to reflect the sound level (𝐿𝐴𝑒𝑞), per-
ceived sound level (Loudness), spectral content (Sharpness, 𝐿𝐶𝑒𝑞 − 𝐿𝐴𝑒𝑞, Tonality), temporal character or
predictability (Impulsiveness, Fluctuation Strength, Relative Approach), and overall annoyance (Psychoa-
coustic Annoyance). These metrics have been proposed as indicators to predict perceptual constructs of the
soundscape (Aletta et al., 2016, 2017) and have shown promise when combined together to form a more
comprehensive model applied to real-world sounds (Orga et al., 2021). The maximum value from the left
and right channels of the binaural recording are used, as suggested in ISO/TS 12913-3:2019 (2019).

Table 1: Psychoacoustic features considered for inclusion in the predictive models. All metrics are calculated for the full length
of the recording (∼ 30𝑠). As recommended by ISO 532-1:2017 (2017) and ISO/TS 12913-2:2018 (2018), the 5th percentile of
Loudness is used rather than the average.

Feature Symbol Unit Calculation Method
Loudness (5th percentile) 𝑁5 sones ISO 532-1:2017 (2017)
Sharpness 𝑆 acum ISO 532-1:2017 (2017)
Roughness 𝑅 asper Sottek and Genuit (2005)
Impulsiveness 𝐼 iu Sottek and Genuit (2005)

3See https://zenodo.org/record/5654747 for “The International Soundscape Database (V0.2.1)” (Last viewed 11/9/21)
4See supplementary material at https://www.scitation.org/doi/suppl/10.1121/10.0008928 for site descriptions per ISO/TS

(2018) featuring the address, overall psychoacoustic characteristics of the location, typical use of each location, and pictures
taken during the survey sessions.

5See https://zenodo.org/record/5654747 for “The International Soundscape Database (V0.2.1)” (Last viewed 11/9/21)
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Feature Symbol Unit Calculation Method
Fluctuation Strength 𝐹𝑆 vacil Sottek and Genuit (2005)
Tonality 𝑇 tuHMS Sottek and Genuit (2005)
Psychoacoustic Annoyance 𝑃𝐴 – Zwicker and Fastl (2007)
𝐿𝐴𝑒𝑞 𝐿𝐴𝑒𝑞 dB IEC 61672-1:2013 (2013)
𝐿𝐴10 − 𝐿𝐴90 𝐿𝐴10 − 𝐿𝐴90 dB ISO 1996-1:2016 (2016)
𝐿𝐶𝑒𝑞 − 𝐿𝐴𝑒𝑞 𝐿𝐶𝑒𝑞 − 𝐿𝐴𝑒𝑞 dB ISO 1996-1:2016 (2016)
Relative Approach 𝑅𝐴 cPA Sottek and Genuit (2005)

Table 2 shows the Pearson correlation coefficient between each of the candidate acoustic features and the
outcome pleasantness and eventfulness. As all variables considered are continuous, and the eventual model
is linear, the Pearson coefficient is chosen as a measure of the strength of the linear relationship between
two continuous variables. For ISOPleasant (ISOPl), we can perhaps see three tiers of correlations: the more
highly correlated tier (|𝑟| > 0.28) consists of Relative Approach (𝑅𝐴), 𝐿𝐴𝑒𝑞, Roughness (𝑅), Loudness (𝑁5),
and Psychoacoustic Annoyance (𝑃𝐴); the low correlation tier consists of 𝐿𝐴10 − 𝐿𝐴90, Tonality (𝑇 ), and
Fluctuation Strength (𝐹𝑆); while 𝐿𝐶𝑒𝑞 − 𝐿𝐴𝑒𝑞, Impulsiveness (𝐼), and Sharpness (𝑆) show no correlation.
For ISOEventful (ISOEv), these tiers are: 𝑅𝐴, 𝐿𝐴𝑒𝑞, 𝑇 , 𝑅, and 𝑁5 comprise the most correlated tier
(|𝑟| > 0.30); 𝐿𝐶𝑒𝑞 − 𝐿𝐴𝑒𝑞, 𝐿𝐴10 − 𝐿𝐴90, 𝐹𝑆, and 𝑃𝐴 show low correlations; 𝐼 and 𝑆 show no correlation.

Table 2: Pearson correlation coefficients between candidate acoustic features and ISOPleasant and ISOEventful across all 13
locations. Only statistically significant (𝑝 < 0.01) coefficients are shown.

ParameterISOPl ISOEv 𝑃𝐴 𝑁5 𝑆 𝑅 𝐼 𝐹𝑆 𝑇 𝐿𝐴𝑒𝑞

𝐿𝐴10 −
𝐿𝐴90

𝐿𝐶𝑒𝑞 −
𝐿𝐴𝑒𝑞

ISOPleasant
ISOEventful -

0.24
𝑃𝐴 -

0.28
0.24

𝑁5 -
0.37

0.33 0.94

𝑆 0.71 0.56
𝑅 -

0.36
0.32 0.63 0.74 0.11

𝐼 -
0.10

-
0.37

0.24

𝐹𝑆 -
0.11

0.14 0.37 0.43 0.46 0.55

𝑇 -
0.21

0.30 0.58 0.63 0.12 0.54 0.16 0.52

𝐿𝐴𝑒𝑞 -
0.34

0.37 0.84 0.93 0.56 0.72 -
0.09

0.37 0.57

𝐿𝐴10 −
𝐿𝐴90

-
0.18

0.15 0.21 0.33 -
0.20

0.31 0.36 0.44 0.40 0.23

𝐿𝐶𝑒𝑞 −
𝐿𝐴𝑒𝑞

-
0.20

-
0.49

-
0.49

-
0.54

-
0.31

-
0.27

-
0.28

-0.61 -0.22

𝑅𝐴 -
0.34

0.31 0.60 0.74 0.18 0.71 0.31 0.63 0.58 0.73 0.23 -0.14

Among the inter-correlations for the psychoacoustic metrics considered for inclusion as input features, we
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can see several very highly correlated features (i.e. > 0.9). As expected, 𝑃𝐴, 𝐿𝐴𝑒𝑞, and 𝑁5 are highly
correlated, meaning that careful consideration is paid to these features to ensure they do not contribute to
multicollinearity in the final model.

2.2. Modelling
Two linear multi-level models (MLM) were computed to predict: 1) ISOPleasant, and 2) ISOEventful.

These models are trained on the 2019 data only, then applied to the acoustic data collected during the 2020
lockdowns, the results of which are reported in Section 3.2.3. The inherent grouped structure of the SSID
database necessitates a modeling and analysis approach which considers the differing relationships between
the objective acoustic features and the soundscape’s perceived affective quality ratings across the various
locations and contexts. The individual-level of the models is made up of the acoustic features calculated
from the binaural recordings made during each respondent’s survey period, while the group-level includes
the categorical LocationID variable indicating the location in which the survey was taken, acting as a
non-auditory contextual factor.

A separate backwards-step feature selection was performed for each of the outcome models in order to
identify the minimal feature set to be used for predicting each outcome. In this feature selection process,
an initial model containing all of the candidate features was fit. Each feature was then removed from the
model one at a time, then the best-performing model is selected and the procedure continues step-wise until
no improvement is seen by removing more features. This process is carried out first on the location-level
features (including the potential to remove all features including LocationID, resulting in a ‘flat’ or standard
multivariate linear regression model), then on the individual-level features. The performance criterion used
for this process was the Akaike Information Criterion (AIC) (Akaike, 1974). To check for multicollinearity
among the selected features, the variance inflation factor (VIF) was calculated and a threshold of VIF <5 was
set. Any features which remained after the backwards stepwise selection and which exceeded this threshold
were investigated and removed if they were highly collinear with the other features.

All of the input features are numeric values, in the units described above. Before conducting feature
selection, the input features are z-scaled to enable proper comparison of their effect sizes. After the feature
selection, the scaled coefficients are used in the text when reporting the final fitted models to facilitate
discussion and comparison between the features. The unscaled model coefficients are reported in ?@sec-
appmod to enable the models to be applied to new data. In order to properly assess the predictive
performance of the model, an 80/20 train-test split with a balanced shuffle across LocationIDs was used.
The z-scaling and feature selection was performed on the training set only, in order to prevent data leakage.
To score the performance of the model on the training and testing sets, we use the mean absolute error
(MAE), which is in the scale of the response feature - for ISOPleasant this means our response can range
from -1 to +1. However, since the end-goal of the model is to predict the soundscape assessment of the
location as a whole, rather than the individual responses, we also assess the performance of the model in
predicting the average response in each location. To do this, the mean response value for each location is
calculated, and the 𝑅2 accuracy across LocationIDs is reported for both the training and testing sets.

The model fitting and feature selection was performed using the step function from lmerTest (v3.1.3)
(Kuznetsova et al., 2017) in R statistical software (v4.0.3) (R Core Team, 2018). The summaries and plots
were created using the sjPlot package (v2.8.6) (Lüdecke, 2021) and seaborn (v0.11.1) (Waskom, 2021).

2.3. Online survey
An online listening test was conducted using the Gorilla Experiment Builder6 (Anwyl-Irvine et al., 2019).

The participants were exposed to a random selection of 78 binaural recordings (39 from 2019 and 39 from
2020, 6 recordings per each location). Each participant had the option to evaluate either 1 or 2 sets of 6
recordings randomly assigned between 13 stimuli sets. Mp3 files, converted at 256 kBps were used due to
the requirements of the Gorilla platform.

6See (<www.gorilla.sc>) (Last viewed 11/29/21)
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No visual stimuli were used in the experiment. The experiment consisted of: 1) an initial exercise to enhance
chances of participants complying to the instructions and wearing headphones; 2) a training set using two
randomly chosen binaural recordings (then not used in the main task) from the dataset; 3) a soundscape
characterization questionnaire starting with an open-ended question about perceived sound sources and
featuring the same questions as the one used in situ, looking into the perceived affective quality of the
soundscape and the perceived sound source dominance of the following four types: traffic noise, other noise,
human sounds and natural sounds; 4) a questionnaire on the basic demographic factors. The questionnaire
used in the Part 3 of the online experiment is reported in Appendix A.

Having in mind the remote nature of the study and to ensure a minimum level of robustness for reliable
sound source recognition, an initial exercise was performed consisting of a headphone screening test (Woods
et al., 2017) and a headphone reproduction level adjustment test (Gontier et al., 2019). The level adjustment
was performed using an eleven-second-long pink noise sample matched to the lowest and the highest 𝐿𝐴90
values from the experimental set. Participants were asked to adjust their listening level to clearly hear the
quieter sample while keeping the level low enough, so they don’t find the louder sample disturbing. The
headphones screening test followed, featuring a stereo signal of one-second-long 100 Hz sine tone, generated
with Izotope RX 6 application, played at a 3 dB difference where one of the equally loud pairs had its phase
inverted. A 100 Hz sine was used because the pilot tests revealed the 200 Hz sine tone proposed by Woods
et al. (2017) created a higher uncertainty varying across different laptop models and would likely contribute
to the chances of a participant fooling the test. It was expected that participants using speakers would not
be able to either hear the sine wave or would be fooled by the inverted phase effect and therefore not able to
pass the trials, unless they were indeed using headphones. The participant needed to recognize the quietest
of the 3 samples in a trial of 6 attempts. Only participants correctly answering 5 or more out of 6 trials
were allowed to proceed with the experiment. Participants were asked not to change their audio output
settings during the rest of the experiment. (This was introduced to ensure that a participant is using a
headphones playback system which allows a listener to clearly recognize a 3 dB difference at 100 Hz as a
proxy for sufficient audio quality playback.)

However, after the initial data collection, questions were raised as to how the playback loudness impacts
ecological validity as it relates to the perceived affective quality of the soundscape. Given this concern, the
PAQ responses from the online surveys were not included in further data analysis. Sound source identification
is not considered to suffer the same validity concerns as this is not directly dependent on absolute playback
level and requires only that the participant can clearly hear what is present. The purpose of the calibration
procedure described above was to ensure the participant could clearly hear the softest samples used.

Online questionnaire data was collected between the 9th of June and the 9th of August 2020. Within
the Gorilla Experiment Builder, a total of 250 attempts to complete the experiment were recorded, where
165 participants were excluded either on the basis of not passing the headphones screening (𝑁 = 79) or
for not completing the experiment, usually before engaging into the screening (𝑁 = 83). Out of a total of
88 participants who completed the test, 2 participants were excluded as outliers as they provided uniform
answers across all the questions and commented on not being able to properly hear the stimuli, despite their
successful completion of the training tests. The participants of the online experiment were of mean age
32.42, 45.1% male, 54.9% female.

Figure 1 illustrates and summarizes the framework and sections described above.

3. Results

The results of the onsite surveys, online experiment, and the model development are reported here. They are
reported following the structure of the ISO/TS 12913 series, revealing the perceived sound source dominance,
key perceptual attributes (ISOPleasant and ISOEventful) and the lockdown-related changes.
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Figure 1: The study flowchart indicating the data collection, analysis, modeling, and discussion throughout the study. The
subsections in the text to which each box refers are indicated in italics.

3.1. Perceived sound source dominance
3.1.1. 2019 sound source composition per location
Questionnaire data was collected in English, Italian, and Spanish in both cities. The respective question-

naires can be found in the supplementary files and Mitchell et al. (2020). Data presented here was aggregated
per LocationID.

According to the highest scored mean value of the dominant sound source type, as shown in Figure 2,
the locations can be grouped into: natural sounds dominated (RegentsParkJapan, RegentsParkFields, Rus-
sellSq), human sounds dominated (SanMarco, TateModern, StPaulsRow, StPaulsCross, MonumentoGa-
ribaldi), noise (traffic and other noise) sounds dominated (CamdenTown, EustonTap, TorringtonSq, Pan-
crasLock). Traffic noise and Other noise have been combined here, and for the rest of the discussion, as
these responses are highly correlated within this dataset and it is not helpful to consider them separately for
this analysis. This follows the alternative sound source labels given in Figure C.3 of ISO/TS 12913-2:2018
(2018) which combines Traffic and Other Noise. Finally, MarchmontGarden is unique in that all sound
source types are assessed as being nearly equally present, with only 0.2 separating the least present (Other
noise, 2.5) and the most present (Traffic noise, 2.7).

3.1.2. Overall change in the perceived sound source dominance during lockdown
1803 words describing the sound sources present in the 2019 recordings and 1395 words related to the

2020 recordings were input by participants in response to the open-ended question Q1 (see Appendix A).
The frequency of occurrence, generated using the WordClouds web app, is shown in the Figure 3, for the
2019 and the 2020 sets respectively. The most frequent words from both 2019 and 2020 groups are: noise,
car/traffic, bird/birds, talk/voice and (foot)steps.

The results from the listening tests deployed online were analyzed using the SPSS Statistics v. 25. Levene’s
test for equality of variances resulted in highly statistically significant values for all 4 sound sources investi-
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Figure 2: (Color online) Mean response per Location ID for the perceived dominance of the sound source types, for the 2019
on-site campaign. The values represent the mean response of all participants in each location to the question “To what extent do
you presently hear the following four types of sounds?”. Response values range from [1] Not at all to [5] Dominates completely.

Figure 3: A graphic illustrating the frequency of occurrence of the sound sources reported by the participants of the online
study across all locations, shown for recordings from the 2019 (above) and 2020 (below).
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gated (less than 0.001). Therefore, a Mann-Whitney U-test test was used as a non-parametric equivalent to
the T-test to investigate the change in the perceived dominance of the four sound source types (McKnight
and Najab, 2010). The results for human sounds indicated that the perceived dominance was greater for the
2019 sample (M=3.82), than for the 2020 sample (M=2.62), U=41,656, p < 0.001. The results for natural
sounds indicated the perceived dominance increased from 2019 (M=2.00) to 2020 (M=2.54), U=63,797, p
< 0.001. However, the differences for the noise sources (traffic and other) were not statistically significant.
The result of these changes is that while Human sounds were the clearly dominant source across the whole
dataset in 2019, in 2020 the sound sources are, on average, much more evenly balanced. No single sound
source category was identified as frequent across the 2020 dataset.

Table 3: Mean values and standard deviation for the perceived dominance of sound sources (rated from 1 - 5), assessed via an
online survey.

Sound source type Campaign N Mean Standard deviation Standard error mean
Traffic 2019 422 2.51 1.369 0.067

2020 383 2.56 1.525 0.078
Other 2019 422 2.00 1.182 0.058

2020 382 2.23 1.333 0.068
Human 2019 423 3.82 1.143 0.056

2020 382 2.62 1.346 0.069
Natural 2019 424 2.00 1.307 0.063

2020 380 2.54 1.441 0.074

3.2. Model selection, performance, and application

Table 4: Scaled linear regression models of ISOPleasant and ISOEventful for 13 locations in London and Venice. ISOPleasant
model structure: Random slope, random intercept multi-level model. ISOEventful model structure: Multi-variate linear
regression.

ISOPleasant ISOEventful
Predictors Estimates Confidence

Interval (CI)
p Estimates CI p

(Intercept) 0.24 0.15–0.33 <0.001 0.14 0.12–
0.16

<0.001

N5 −0.06 −0.10–0.02 <0.001
S −0.08 −0.11–

0.06
<0.001

FS −0.02 −0.05–
0.00

0.033

T 0.04 0.01–
0.07

0.002

𝐿𝐴𝑒𝑞 0.14 0.11–
0.17

<0.001

𝐿𝐶𝑒𝑞 − 𝐿𝐴𝑒𝑞 −0.03 −0.05–
0.00

0.052

Random
effects
𝜎2 0.11
𝜏00 0.03𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷
𝜏11 0.02𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷.𝐿𝐴𝑒𝑞

0.00𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷.𝐿𝐴10−𝐿𝐴90
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ISOPleasant ISOEventful
0.00𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷.𝐿𝐶𝑒𝑞−𝐿𝐴𝑒𝑞

ICC 0.90
N 13𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷
Observations 914 914
MAE train,
test

0.258 0.259 0.233 0.231

3.2.1. ISOPleasant model selected
Following the feature selection, the ISOPleasant model (given in Table 4) has 𝑁5 as the fixed effect with a

scaled coefficient of -0.06, and 𝐿𝐴𝑒𝑞, 𝐿𝐴10 − 𝐿𝐴90, and 𝐿𝐶𝑒𝑞 − 𝐿𝐴𝑒𝑞 as coefficients which vary depending on
the LocationID. The training and testing MAE are very similar, indicating that the model is neither over-
nor under-fitting to the training data (𝑀𝐴𝐸𝑡𝑟𝑎𝑖𝑛 = 0.258; 𝑀𝐴𝐸𝑡𝑒𝑠𝑡 = 0.259). The model performs very
well at predicting the average soundscape assessment of the locations (𝑅2

𝑡𝑟𝑎𝑖𝑛 = 0.998; 𝑅2
𝑡𝑒𝑠𝑡 = 0.85).

The high intraclass correlation (𝐼𝐶𝐶 = 0.90) demonstrates that the location-level effects are highly impor-
tant in predicting the pleasantness dimension. Within this random-intercept random-slope model structure,
these effects include both the specific context of the location (i.e. the LocationID factor), but also the 𝐿𝐴𝑒𝑞,
𝐿𝐴10 − 𝐿𝐴90, and 𝐿𝐶𝑒𝑞 − 𝐿𝐴𝑒𝑞 features whose effects vary across locations. These slopes are given in Fig-
ure 4. This point highlights the need to consider how the context of a location will influence the relationship
between the acoustic features and the perceived pleasantness.

Figure 4: (Color online) Location-level scaled coefficients for the ISOPleasant model.

3.2.2. ISOEventful model selected
Through the group-level feature selection, all of the group-level coefficients were removed, including the

LocationID factor itself. Therefore the final ISOEventful model is a ‘flat’ multi-variate linear regression
model, rather than a multi-level model. The ISOEventful model is a linear combination of S, FS, T, 𝐿𝐴𝑒𝑞,
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and 𝐿𝐶𝑒𝑞 − 𝐿𝐴𝑒𝑞. The training and testing MAE are very similar, indicating that the model is not over-fit
to the training data (𝑀𝐴𝐸𝑡𝑟𝑎𝑖𝑛 = 0.233; 𝑀𝐴𝐸𝑡𝑒𝑠𝑡 = 0.231). The model performs slightly worse than the
ISOPleasant at predicting the mean location responses, but still performs well (𝑅2

𝑡𝑟𝑎𝑖𝑛 = 0.873; 𝑅2
𝑡𝑒𝑠𝑡 =

0.715).

3.2.3. Application to lockdown data
Once the two models were built and assessed, they were then applied to the lockdown recording data in

order to predict the new soundscape ISO coordinates. Figure 5 (a) shows the pre-lockdown ISO coordinates
for each location and Figure 5 (b) shows how the soundscapes are predicted to have been assessed during
the lockdown period. As in the model assessment process, the predicted responses are calculated for each
recording individually, then the mean for each location is calculated and plotted on the circumplex.

In 2019 the majority of locations in the dataset fall within the ‘vibrant’ quadrant of the circumplex,
particularly those which are primarily dominated by human activity (e.g. San Marco, Tate Modern). Camden
Town and Euston Tap, which are both in general visually and acoustically dominated by traffic, are the only
two to be rated as ‘chaotic’, while no locations are overall considered to be ‘monotonous’. During the 2020
lockdown, there is general positive move along the ‘pleasant’ dimension and general negative move along
the ‘eventful’ dimension, but several different patterns of movement can be noted. These are investigated
further in the Discussion section below.

4. Discussion

4.1. Interpretation of the results
To interpret the results addressing the RQ1 and RQ2, it is necessary to separately look into the overall

change in sound source composition, and the change in the affective quality of soundscapes per location.

4.1.1. Change in the sound source composition
The open-ended question about sound sources in the online survey did not reveal a change in sound source

types but rather confirmed that all types were still present in both conditions. The sound source composition
question taken from the Method A of the ISO/TS 12913-2:2018 (2018) revealed a statistically significant
reduction in human sound sources and a significant increase in the perceived dominance of natural sound
sources.

The most frequent sound sources detected from the open-ended question correspond to the main four sound
source types investigated, which indicated that all types remained present in the lockdown condition (at all
the locations). While traffic intensity might have gone down, where the results of the Mann-Whitney U-test
were inconclusive, but supported by the psychoacoustic measurements (Aletta et al., 2020), traffic-related
sound sources were still clearly present.

The sound source composition of an outdoor acoustic environment is extremely complex. Removing one
component, such as human sounds, has implications on the whole (Gordo et al., 2021). Testing the effects
of this in situ is not straightforward and interpreting this study in line with ‘what is the impact of human
sounds’ must be taken within the broader context of the range of conditions which changed within the
acoustic environment. However, looking at the overarching picture, the lockdown condition was a useful and
unique case study to understand the impact which human activities – and the human sound source type in
particular – can have on soundscape perception of urban open spaces.

4.1.2. Predicted relative changes in soundscapes due to COVID-19 restrictions
In order to interpret how the change of the acoustic environment at the locations examined would have

been perceived, and to answer RQ2, relative change vectors within the circumplex space are shown in
Figure ??. This clearly shows a few different patterns of soundscape change due to the effects of the 2020
lockdown. These can be further looked into depending on the magnitude and direction of change, shifts
between quadrants shown in Figure 5, and the sound source composition. The discussion below is organized
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Figure 5: (Color online) Soundscape circumplex coordinates for (a) the mean ISOPleasant and ISOEventful responses for each
location; and (b) the mean predicted responses based on recordings made during the lockdown and the change in the location’s
placement in the circumplex. In (b) the marker outline is shown for the 2019 location, red arrows indicate the change in the
location’s coordinates.
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Figure 6: (Color online) The relative change in soundscape perception in the circumplex due to the COVID-19 lockdowns as
predicted by the models, represented as vectors centered on the origin. The lawn-works dominated session is shown separately
as MonumentoGaribaldi with a gray arrow to indicate that this is distinct from the effects of the lockdown changes.
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according to groups of locations which show similar behaviors in the predicted magnitude and direction of
change, or discusses a single location which is particularly notable.

4.1.2.1. Piazza San Marco.

The largest change is seen in Piazza San Marco, with a predicted increase in pleasantness of 0.24 and a
decrease in eventfulness of 0.44, enough to move the soundscape out of the ‘vibrant’ quadrant and into ‘calm’.
This extreme change (relative to the rest of the locations) is exactly what would be expected given the unique
context of the measurements taken in 2019 – the measurement campaign corresponded with Carnevale, a
yearly festival which centers around the square. By contrast, due to the particularly strict measures imposed
in Italy, during the lockdown measurement period, the square was almost entirely devoid of people. What is
promising is that, without any of this contextual information about the presence or absence of people, our
model is able to capture and reflect what may be considered a reasonable and expected direction and scale
of change within the soundscape circumplex.

4.1.2.2. Locations showing an increase in pleasantness.

The next locations of interest are those which, in the 2019 survey data, were rated as being dominated by
traffic noise: Euston Tap, Camden Town, Torrington Square, and Pancras Lock. These are the only locations
(besides San Marco) which show a predicted increase in pleasantness. Of these traffic-dominated spaces, the
two which were most heavily dominated by traffic noise (Camden Town and Euston Tap) showed the most
increase in pleasantness, with Torrington Square having slightly less of an increase. Pancras Lock, which
was also rated as having high levels of both Human and Natural sounds shows only a modest improvement
in pleasantness.

4.1.2.3. Locations showing a decrease in pleasantness.

Among the locations which are predicted to experience a negative effect on pleasantness we see a mix of
spaces which were assessed as being dominated by Human (St Pauls Cross and Tate Modern) and Natural
(Regents Park Japan, Regents Park Fields, Russell Square) sounds before the lockdown. It is hard to discern
a pattern of difference between these two groups, although it appears that the Human-dominated spaces
saw a greater reduction in eventfulness, compared to the Natural-dominated spaces.

In general, we note that most of the spaces experience some degree of reduction in eventfulness. This
pattern is particularly consistent with what would be expected from a reduction in human presence in these
spaces (Aletta and Kang, 2018), as reflected by the observation that, in general, those spaces which had
the most human sounds prior to the lockdown showed the greatest reduction in eventfulness during the
lockdown. In particular, Tate Modern, Camden Town, and Torrington Square show the greatest reduction
in eventfulness. This appears to be due to these locations showing the greatest reduction in overall 𝐿𝐴𝑒𝑞
compared to other locations (8.1 dB, 5.2 dB, and 9.2 dB, respectively), with 𝐿𝐴𝑒𝑞 being the most influential
feature in the eventfulness model, as shown in Table 4. However, Russell Square also experienced a large
decrease in 𝐿𝐴𝑒𝑞 on average (10.5 dB) but does not show the same reduction in eventfulness. This appears
due to the correspondingly large decrease in 𝑆 (1.17 acum) which is not seen at the 3 previously mentioned
locations. Russell Square normally features a medium-sized jet fountain which was turned off during the
lockdowns in 2020 and therefore it experienced a drop in the overall sound level, but an increase in the
proportion of low frequency noise to high frequency noise reflected by a decrease in sharpness which, within
the eventfulness model, effectively cancels out the impact of the reduction in 𝐿𝐴𝑒𝑞. While the overall sound
level has an important impact, in order to determine the true impact a reduction in sound level may have,
it must be taken in context with how the other aspects of the sound will also change.

4.1.2.4. Euston Tap.

An unexpected result is that Euston Tap is predicted to experience an increase in eventfulness and it is
unclear whether this accurately reflects the real experience people would have had in the space. Normally,
Euston Tap is a mostly-outdoor drinking venue located at the entrance to London Euston Station and
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situated directly along a very busy central London road. During the 2020 survey, the researchers noted
that the music and chatter of people from the pub was noticeably missing, but that the perceived reduction
in road traffic was minimal. Based on the theory of vibrancy which would suggest it is driven by human
presence and sounds (Aletta and Kang, 2018), we would not therefore expect a shift in the vibrant direction
as indicated here. This discrepancy may reveal a weakness in the context-independent ISOEventful model,
or it may in fact be indicating that, at certain thresholds of traffic noise, a reduction in level – and therefore
a reduction in energetic masking – will allow other aspects of the sound to influence the perception.

4.1.2.5. Monumento Garibaldi.

Finally, special attention should be paid to the results shown for Monumento Garibaldi, which in 2019
was perceived as a pleasant and slightly calm green space featuring a gravel walkway. During the first
measurement session during the lockdown in 2020, the researcher noted that the soundscape was dominated
by landscaping works, in particular noise from strimmers (or weed whackers). In order to gain a sample
which was more representative of the impact of the lockdowns, the researcher returned another day to repeat
the measurements without interference from the works.

To examine the impact of these two scenarios separately, the prediction model was fitted to the data from
the two sessions independently and the session which was impacted by the landscaping works is shown in
Figure 6 in gray and labeled MonumentoGaribaldi*, while the unaffected session is shown in red. In the
latter case, the predicted change in soundscape as a result of the lockdown fits neatly into what would be
expected and closely matches the predicted behavior of similar locations in London (i.e. Marchmont Garden
and Russell Square). On the other hand, the session which was dominated by noise from the strimmers is
predicted to have become much more chaotic, with a decrease in pleasantness of 0.16 and an increase in
eventfulness of 0.27. This indicates that, although the model has no contextual information about the type
of sound and in fact the training data never included sounds from similar equipment, just based on the
psychoacoustic features of the sound it is able to reasonably predict the expected change in soundscape.

4.1.2.6. General notes.

As a whole, the primary impact of the 2020 lockdowns on the soundscapes in London and Venice was an
overall decrease in eventfulness. With the exception of Euston Tap, all of the sessions show some degree of
reduction in eventfulness, reflecting the general decrease in sound levels and human sound sources across
the locations. The impact of the lockdowns on pleasantness is more mixed and seems to be driven by the
previous dominance of traffic noise in the space. However, it could also be noted that, while all locations
experienced a reduction in sound level, those which are predicted to become more pleasant had an average
𝐿𝐴𝑒𝑞 above 60 dB in 2019. By contrast, the locations which were predicted to experience a decrease in
pleasantness generally had sound levels below 60 dBA in 2019. This may indicate that reductions in sound
level can improve pleasantness when the sound level exceeds some threshold of around 60 - 65 dBA but are
ineffective when sound levels are below this threshold. Similarly, Yang and Kang (2005) showed that, when
the sound level is ‘lower than a certain value, say 70 dB’ there is no longer a significant improvement in the
evaluation of acoustic comfort as the sound level reduces. It is unclear at this point where this threshold
would lie for pleasantness/annoyance, how strict it may be, or how it is impacted by the sound source
composition of the acoustic environment, therefore further research is needed in this area.

4.1.3. Model selection results
The most immediately interesting result of the model-building and feature selection process, answering to

RQ3, is the apparent irrelevance of location context to the ISOEventful dimension. The multilevel model
structure was chosen since the starting assumption was that soundscape perception is heavily influenced by
contextual factors, such as expectations of the space and visual context (Ricciardi et al., 2015). For this
modeling, these factors can be considered as location-level latent variables at least partially accounted for
by the inclusion of the LocationID as the second-level factor. While this assumption certainly held true for
ISOPleasant, our results indicate that these types of contextual factors are not significant for ISOEventful,
and do not affect the relationship between the acoustic features of the sound and the perception.
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In particular this result may herald a shift in modeling approach for soundscapes – where previous methods,
in both the soundscape and noise paradigms, have mostly focused on deriving acoustic models of annoyance
(in other words have focused on the ISOPleasant dimension) perhaps they should instead consider the
acoustic models as primarily describing the eventfulness dimension when considered in situ. In addition
this study takes the approach of modeling responses at an individual level in order to derive the soundscape
assessment of the location. Rather than either attempting to represent the predicted response of an individual
person – which is less useful in this sort of practical application – or to base the model on average metrics
of the location, the goal is instead to characterize the location itself, through the aggregated predicted
responses of individuals. The authors believe this modeling approach better addresses the practical goal of
predictive soundscape modeling and reflects the structure of the data collection.

4.2. Limitations of the study
The onsite sampling method was initially not intended as the ultimate characterization of a location’s

soundscape but rather as a tool for model development. Therefore, the change observed does not necessarily
represent the ground truth about the site’s soundscape, if such a thing exists. Further, the online listen-
ing tests took a relatively small but random sample from the available database and did not include any
contextual information. This proved to be sufficient for the purpose of detecting a change in sound source
composition, however the relatively small sample of recordings included in the online study does limit how
representative they are of the location’s sound environment as a whole. Similarly, the surveys and recordings
taken represent only a snapshot of the soundscape or sound environment for a short period in time. This
is a flaw in most soundscape sampling methods presented both in the literature and in ISO/TS 12913-2.
To truly be said to characterize the soundscape of a space, long-term monitoring and survey methods will
need to be developed in order to capture the changing environmental and contextual conditions in the space.
Models of the sort presented here, which are based on measurable quantities, could prove to be useful in
this sort of longterm monitoring as they could take continuous inputs from sensors and generate the likely
soundscape assessment over time.

The audio-visual interaction forms a key component in people’s perception of urban spaces. This consid-
eration has been a strength of soundscape research and has been incorporated via the use of in situ data
collection. However, the visual aspect, and in particular how the visual environment changed as a result
of the lockdown condition, was not considered in this study, reducing the comprehensiveness of the model.
This was due primarily to data collection limitations imposed by the lockdown restrictions which made
it impractical to replicate the 360∘ videos made during the 2019 sessions. Future work on comprehensive
predictive soundscape models should strive to make use of this visual aspect within their considered features.

The limitation of the sound source categorization adopted from the ISO standard is that it may not be
clear to a respondent in which category they would place community sounds like church bells and music.
This may be particularly relevant for comparing the lockdown condition, as in particular the ringing of
bells for worship varied in different contexts throughout the pandemic. Whether bells ceased entirely or
were increased not only would have an impact on the sound environment, but the purposeful action behind
the decision to ring bells may have changed to public’s relationship to and perception of the sound itself
(Parker and Spennemann, 2020). The open ended question on sound sources, however, revealed the presence
of church bells in both years. Unfortunately, this is a limitation of the sound source categories given by
the ISO standard on which this questionnaire was based. A sensible update based on the findings and
experiences reported here would be to combine the Traffic and Other Noise categories as separating them
does not appear to provide additional information, and to include a new category which would in some way
encapsulate the types of community sounds for which there is currently not a clear category.

Further, the lockdown condition is likely to cause distortions of the circumplex soundscape perception
model. Therefore, it is important to acknowledge that all the predictions were made for the people with no
experience of the pandemic and its psychological effects. Conceptually, this model captured the perceptual
mapping (i.e. the relationship between the acoustic indicator inputs and the soundscape descriptor outputs)
of people in 2019, but this perceptual mapping is likely to have been affected by the psychological and
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contextual impacts of the lockdown itself, independent of its changes on the sound environment. Future
research might look into potential perception changes in the post-pandemic world.

5. Conclusion

This study demonstrates an application of predictive modeling to the field of soundscape studies. The
model building results reveal that, within this dataset, an approach based on psychoacoustics can achieve
𝑅2 = 0.85 for predicting the pleasantness of locations and 𝑅2 = 0.715 for predicting the eventfulness. A
modeling–focused method of this sort is a key component to the potential scalability of the soundscape
approach to applications such as smart city sensing, urban planning, and cost-effective, sustainable design.
To demonstrate the usefulness and feasibility of such an approach, we apply our predictive model to a unique
case study in which traditional soundscape survey methods were impossible.

By applying this predictive model to recordings collected during the 2020 lockdown, the change in percep-
tion of the urban soundscapes is revealed. In general, soundscapes became less eventful, and those locations
which were previously dominated by traffic noise became more pleasant. By contrast, previously human-
and natural-dominated locations are in fact predicted to become less pleasant despite the decrease in sound
levels. While all sound source categories remained present in both years, overall, in 2020 a decrease in human
sounds’ dominance was observed together with an increase in the perceived dominance of natural sounds.
Although these results are limited in that they represent one snapshot of the soundscape of the spaces, the
success of the model in responding to new and disturbing sound events demonstrates its potential usefulness
in long-term monitoring of urban soundscapes.
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Appendix A: Online survey questionnaire

Table 5: Questionnaire deployed via the Gorilla Experiment Builder

Q1 While listening, please note any sound sources you can identify in this sound
environment

Q2 To what extent have you heard the following four types of sounds?
Traffic noise (e.g., cars, buses, trains, airplanes)
Not at all / A little / Moderately / A lot / Dominates completely
Other noise (e.g., sirens, construction, industry, loading of goods)
Not at all / A little / Moderately / A lot / Dominates completely

7See https://cordis.europa.eu/project/rcn/211802/factsheet/en (Last viewed 12/7/21)
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Sounds from human beings (e.g., conversation, laughter, children at play, footsteps)
Not at all / A little / Moderately / A lot / Dominates completely
Natural sounds (e.g., singing birds, flowing water, wind in vegetation)
Not at all / A little / Moderately / A lot / Dominates completely

Appendix B: Model Results

Table 6 presents the unscaled coefficients for the ISOPleasant and ISOEventful predictive models. The
scaled coefficients are presented in the body of the text to facilitate comparisons between the various factors.
However, we feel it is important to present unscaled coefficients such that these models could be implemented
and compared for future work.

Table 6: The unscaled linear regression models of ISOPleasant and ISOEventful for 13 locations in London and Venice. Statis-
tically significant p-values are highlighted in bold.

ISOPleasant ISOEventful
Predictors Estimates Confidence

Interval (CI)
p Estimates CI p

(Intercept) 0.38 0.28–0.50 <0.001 -0.77 -1.05-
0.48

<0.001

N5 −0.01 −0.01–0.00 <0.001
S −0.17 −0.23–

0.12
<0.001

FS −1.36 −2.61–
0.11

0.033

T 0.24 0.08–
0.39

0.002

𝐿𝐴𝑒𝑞 0.02 0.08–
0.29

<0.001

𝐿𝐶𝑒𝑞 − 𝐿𝐴𝑒𝑞 −0.01 −0.02–
0.00

0.052

Random
effects
𝜎2 0.11
𝜏00 1.01𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷
𝜏11 0.00𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷.𝐿𝐴𝑒𝑞

0.00𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷.𝐿𝐴10−𝐿𝐴90
0.00𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷.𝐿𝐶𝑒𝑞−𝐿𝐴𝑒𝑞

ICC 0.90
N 13𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷
Observations 914 914
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